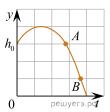

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида $(1,4\pm0,2)$ Н записывайте следующим образом: 1,40,2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. График зависимости напряжения U на проводнике от его сопротивления R при силе тока I= const представлен на рисунке, обозначенном цифрой:



2. В таблице представлено изменение с течением времени координаты автомобиля, движущегося с постоянным ускорением вдоль оси Ox.

Момент времени t , с	0,0	2,0	4,0
Координата x , м	-3,0	0,0	9,0

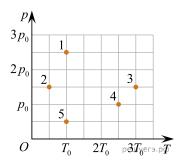
Проекция ускорения a_x автомобиля на ось Ox равна:

3. На рисунке представлен график зависимости координаты y тела, брошенного вертикально вверх с высоты h_0 , от времени t. Укажите правильное соотношение для модулей скоростей тела в точках A и B.

1)
$$v_B = 9v_A$$
 2) $v_B = 3\sqrt{3}v_A$ 3) $v_B = 3v_A$ 4) $v_B = \sqrt{3}v_A$ 5) $v_B = \sqrt{2}v_A$

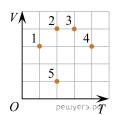
4. На материальную точку массой т = 0,50 кг действуют две силы, модули которых $F_1 = 4.0~H~u~F_2 = 3.0~H$, направленные под углом $\alpha = 90^\circ$ друг к другу. Модуль ускорения а этой точки равен:

- 1) 2.0 m/c^2
- 2) 5.0 m/c^2
- 3) 8.5 m/c^2
- 4) 10 m/c^2 5) 14 m/c^2


5. Шайба массой $m=90\ {}_{\Gamma}$ подлетела к вертикальному борту хоккейной коробки и отскочила от него в противоположном направлении со скоростью, модуль которой остался прежним: $v_2 = v_1$. Если модуль изменения импульса шайбы $|\Delta p|=2,7$ $\frac{\mathrm{K}\Gamma\cdot\mathrm{M}}{\mathrm{c}},$ то модуль скорости шайбы v_2 непосредственно после ее удара о борт равен:

- 1) $5\frac{M}{C}$ 2) $10\frac{M}{C}$ 3) $15\frac{M}{C}$ 4) $20\frac{M}{C}$ 5) $40\frac{M}{C}$

6. Вдоль резинового шнура распространяется волна со скоростью, модуль которой V=3.0 м/с. Если частота колебаний частиц шнура v=2.0 Γ ц, то разность фаз Дф колебаний частиц, для которых положения равновесия находятся на расстоянии l = 75 см, равна:

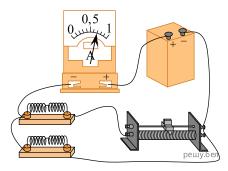

- 1) $\pi/2$ pad
- *2)* π *pa*∂
- 3) $3\pi/2$ pad
- 4) $2\pi pad$
- 5) 4π pað

7. На р — Т диаграмме изображены различные состояния идеального газа. Состояние c наибольшей концентрацией n_{max} молекул газа обозначено цифрой:

- 1) 1
- 3) 3
- 5) 5

8. На V-Т диаграмме изображены различные состояния некоторого вещества. Состояние с наибольшей средней кинетической энергией молекул обозначено цифрой:

- 1) 1 2) 2
- 3) 3
- 5) 5


9. Идеальный одноатомный газ, количество вещества которого $v = \frac{1}{8.31}$ моль, отдал количество теплоты |Q|=20 Дж. Если при этом температура газа уменьшилась на $|\Delta t| = 20$ °C, то:

- 1) над газом совершили работу $A' = 10 \, \text{Дж};$
- 2) над газом совершили работу A' = 50 Дж;
 - 3) газ не совершал работу A = 0 Дж;
 - 4) газ совершил работу $A = 50 \, Дж;$
 - 5) газ совершил работу A = 10 Дж.

10. Сосуд, плотно закрытый подвижным поршнем, заполнен воздухом. В результате изотермического расширения объём воздуха в сосуде увеличился в два раза. Если относительная влажность воздуха в конечном состоянии $\varphi_2 = 40\%$, то в начальном состоянии относительная влажность ϕ_1 воздуха была равна:

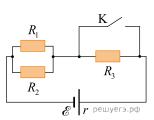
- 1) 20%
- 2) 30%
- 3) 40%
- 4) 80%
- 5) 100%

11. На рисунке изображена электрическая цепь, подключённая к источнику постоянного напряжения с пренебрежимо малым внутренним сопротивлением. Сопротивления каждого резистора и всей намотки реостата одинаковы, амперметр — идеальный. Если ЭДС источника $\mathscr{E}=50~\mathrm{B}$, то после перемещения ползунка реостата из среднего положения в крайнее левое положение во внешней цепи будет выделяться тепловая мощность P, равная ... P P.

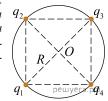
12. На горизонтальном полу лифта, двигающегося с направленным вниз ускорением, стоит чемодан массой $m=30~{\rm Kr},$ площадь основания которого $S=0,080~{\rm M}^2.$ Если давление, оказываемое чемоданом на пол, $p=2,4~{\rm K}\Pi{\rm a},$ то модуль ускорения а лифта равен ... $\frac{{\rm JM}}{{\rm c}^2}.$

13. На горизонтальном прямолинейном участке сухой асфальтированной дороги водитель применил экстренное торможение. Тормозной путь автомобиля до полной остановки составил $s=31\,$ м. Если коэффициент трения скольжения между колесами и асфальтом $\mu=0,65,$ то модуль скорости v_0 движения автомобиля в начале тормозного пути равен ... $\frac{\rm M}{c}$.

14. На невесомой нерастяжимой нити длиной l=98 см висит небольшой шар массой M=38,6 г. Пуля массой m=1,4 г, летящая горизонтально со скоростью \vec{v}_0 , попадает в шар и застревает в нем. Если скорость пули была направлена вдоль диаметра шара, то шар совершит полный оборот по окружности в вертикальной плоскости при минимальном значении скорости v_0 пули, равном ...м/с.

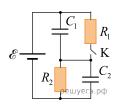

15. Зависимость координаты х пружинного маятника, совершающего колебания вдоль горизонтальной оси Ox, от времени t имеет вид $x(t)=A\sin(\omega t+\phi_0)$, где $\omega=\frac{17\pi}{18}~{\rm pag/c},~\phi_0=\frac{2\pi}{9}~{\rm pag}$. Если в момент времени t=1,0 с потенциальная энергия пружины $E_{\rm II}=9$,0 мДж, то полная механическая энергия E маятника равна ... мДж.

16. Внутри электрочайника, электрическая мощность которого P=700 Вт, а теплоёмкость пренебрежимо мала, находится горячая вода $\left(c=4200\frac{\text{Дж}}{\text{K}\Gamma^{\,\circ}\text{C}}\right)$ массой m=1.0 кг. Во включённом в сеть электрическом чайнике вода нагрелась от температуры $t_1=88.0$ °C до температуры $t_2=92.0$ °C за время $\tau_1=40$ с. Если затем электрочайник отключить от сети, то вода в нём охладится до начальной температуры t_1 за время τ_2 , равное ... с.


Примечание. Мощность тепловых потерь электрочайника считать постоянной.

17. При изотермическом расширении одного моля идеального одноатомного газа, сила давления газа совершила работу $A_I=1,60$ кДж. При последующем изобарном нагревании газу сообщили в два раза большее количество теплоты, чем при изотермическом расширении. Если начальная температура газа $T_I=326~{\rm K},$ то его конечная температура T_2 равна ... ${\it K}.$

18. На рисунке представлена схема электрической цепи, состоящей из источника тока, ключа и трех резисторов, сопротивления которых $R_1=R_2=6,00$ Ом, $R_3=2,00$ Ом. По цепи в течение промежутка времени t=30,0 с проходит электрический ток. Если ЭДС источника тока $\varepsilon=12,0$ В, а его внутреннее сопротивление r=1,00 Ом, то работа $A_{\rm cm}$. сторонних сил источника тока при разомкнутом ключе K равна ... Дж.


19. На окружности радиуса R=3,0 см в вершинах квадрата расположены электрические точечные заряды $q_1=5,0$ нКл, $q_2=q_3=2,0$ нКл, $q_4=-2,0$ нКл (см. рис.). Модуль напряжённости E электростатического поля, образованного всеми зарядами в центре окружности (точка O), равен ... кB/м.

20. Сила тока в проводнике зависит от времени t по закону I(t)=B+Ct, где B=2,0 A, C=1,0 A/c. Чему равен заряд q, прошедший через поперечное сечение проводника в течение промежутка времени от $t_1=8,0$ c до $t_2=12$ c? Ответ приведите в кулонах.

21. На дне сосуда с жидкостью, абсолютный показатель преломления которой n=1,50, находится точечный источник света. Если площадь круга, в пределах которого возможен выход лучей от источника через поверхность жидкости, $S=740\ {\rm cm}^2$, то высота h жидкости в сосуде равна ... **мм**. Ответ округлите до иелых.

22. В электрической цепи, схема которой представлена на рисунке, ёмкости конденсаторов $C_1=100~\rm Mk\Phi$, $C_2=300~\rm Mk\Phi$, ЭДС источника тока $\mathscr E=60,0~\rm B$. Сопротивление резистора R_2 в два раза больше сопротивления резистора R_1 , то есть $R_2=2R_1$. В начальный момент времени ключ K замкнут и через резисторы протекает постоянный ток. Если внутреннее сопротивление источника тока пренебрежимо мало, то после размыкат

ния ключа K в резисторе R_2 выделится количество теплоты Q_2 , равное ... **мДж**.

23. На дифракционную решётку нормально падает белый свет. Если для излучения с длиной волны $\lambda_1=480$ нм дифракционный максимум третьего порядка ($m_1=3$) наблюдается под углом θ , то максимум четвертого порядка ($m_2=4$) под таким же углом θ будет наблюдаться для излучения с длиной волны λ_2 , равной? Ответ приведите нанометрах.


24. Для исследования лимфотока пациенту ввели препарат, содержащий $N_0=120~000$ ядер радиоактивного изотопа золота $^{133}_{54}$ Xe. Если период полураспада этого изотопа $T_{\frac{1}{2}}=5.5~{\rm cyr.}$, то $\Delta N=90000~{\rm sdep}~^{133}_{54}$ Xe распадётся за промежуток времени Δt , равный ... сут.

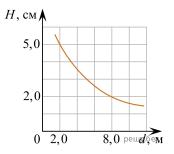
25. Если за время $\Delta t = 30$ суток показания счётчика электроэнергии в квартире увеличились на $\Delta W = 31.7$ кВт \cdot ч, то средняя мощность P, потребляемая электроприборами в квартире, равна ... Вт.

26. Электрическая цепь состоит из источника тока, внутреннее сопротивление которого r=0,50 Ом, и резистора сопротивлением R=10 Ом. Если сила тока в цепи I=2,0 А, то ЭДС $\mathcal E$ источника тока равна ... В.

27.

На рисунке изображена схема электрической цепи, состоящей из источника тока и шести одинаковых резисторов

$$R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = 10.0 \, \text{Om}.$$


В резисторе R_6 выделяется тепловая мощность $P_6=90.0$ Вт. Если внутреннее сопротивление источника тока r=4.00 Ом, то ЭДС $\mathcal E$ источника тока равна ... $\mathcal B$.

- **28.** Электрон, модуль скорости которого $\upsilon=1,0\cdot 10^6~\frac{\rm M}{\rm C}$, движется по окружности в однородном магнитном поле. Если на электрон действует сила Лоренца, модуль которой $F_\Pi=6,4\cdot 10^{-15}~{\rm H}$, то модуль индукции В магнитного поля равен ... мТл.
- **29.** В идеальном колебательном контуре, состоящем из конденсатора и катушки, индуктивность которой L=0.20 мГн, происходят свободные электромагнитные колебания. Если циклическая частота электромагнитных колебаний $\omega=1.0\cdot 10^4~\frac{\mathrm{pa_{J}}}{\mathrm{c}}$, то ёмкость C конденсатора равна ... мк Φ .

30.

График зависимости высоты H изображения карандаша, полученного с помощью тонкой рассеивающей линзы, от расстояния d между линзой и карандашом показан на рисунке. Модуль фокусного расстояния |F| рассеивающей линзы равен ... дм.

Примечание. Карандаш расположен перпендикулярно главной оптической оси линзы.

